These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Impaired vagal reflex activity in insulin-resistant rats.
    Author: Miller AW, Sims JJ, Canavan A, Hsu T, Ujhelyi MR.
    Journal: J Cardiovasc Pharmacol; 1999 May; 33(5):698-702. PubMed ID: 10226855.
    Abstract:
    Insulin resistance, without frank diabetes, is associated with sudden cardiac death. We postulated that a potential mechanism for this association is autonomic dysfunction. Male Sprague-Dawley rats were randomized into one of two groups: (a) insulin resistant (IR; n = 15), or (b) control (n = 11). Animals were made insulin resistant with a fructose-rich diet, whereas control animals received standard rat chow. Four weeks after randomization, arterial pressure and baroreceptor reflex were assessed. Baroreflex sensitivity was defined as the heart-rate response to acute blood pressure changes caused by nitroprusside (0.5-18 micrograms) or phenylephrine (0.2-3 micrograms). To determine the role of vagal stimulation specifically, each animal was randomized to receive atropine sulfate (1 mg/kg) or vehicle (normal saline) before administration of phenylephrine. Mean arterial pressure and fasting insulin concentrations were increased in the insulin-resistant group, whereas there were no differences in body weight, fasting glucose concentrations, or resting heart rate. Phenylephrine increased arterial blood pressure to a maximum of 54 +/- 2 mm Hg for control and 45 +/- 6 mm Hg for IR, p = 0.7. The maximal heart-rate change response to the increased blood pressure was markedly blunted in IR as compared with control (-88 +/- 12 beats/min for IR vs. -238 +/- 18 beats/min for control; p < 0.001). Thus the baroreflex sensitivity (BRS) was threefold less in IR versus the control group (-1.8 +/- 0.2 vs. -4.6 +/- 0.7 beats/min/mm Hg; p = 0.001). Pretreatment with atropine sulfate decreased the BRS in both groups, eliminating the difference between groups (-0.96 +/- 0.5 beats/min/mm Hg for control and -0.56 +/- 0.3 beats/min/mm Hg for IR; p = 0.2). Thus atropine sulfate caused the phenylephrine-induced heart rate and arterial blood pressure response to be equal between groups. On the other hand, BRS to nitroprusside-induced blood pressure changes were similar between groups. Insulin resistance, without the confounding factors of obesity, diabetes, and significant hypertension, is associated with a large reduction in vagal activity, which occurs via attenuation in reflex activity. In contrast, the insulin-resistant syndrome does not affect baroreflex sensitivity via sympathetic reflex.
    [Abstract] [Full Text] [Related] [New Search]