These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Allogeneic cultured dermal substitute composed of spongy collagen containing fibroblasts: evaluation in animal test.
    Author: Tanaka M, Nakakita N, Kuroyanagi Y.
    Journal: J Biomater Sci Polym Ed; 1999; 10(4):433-53. PubMed ID: 10227466.
    Abstract:
    The authors developed a cultured dermal substitute (CDS) composed of a spongy collagen containing cultured fibroblasts. The cultured fibroblasts derived from Sprague Dawley rat skin were seeded on a spongy collagen at a density of 5 x 10(5) cells cm(-2) and cultured for 7 days. This CDS was applied to the debrided wound of full-thickness burn which was inflicted experimentally on the dorsum of Wister rat, and then the wound conditions were observed over a period of 2 weeks. The comparative study was conducted using an acellular spongy collagen as well as a commercially available temporary wound dressing, Biobrane, since a different type of cultured dermal substitute, Dermagraft-TC, is composed of Biobrane, whose inner site is combined with cultured fibroblasts. Each covering material was applied on the debrided wound area and exchanged by new one 1 week later. When the debrided wound was covered with Biobrane, a small portion of necrotic tissue was observed 1 week after application, and the granulation tissue formation was greatly delayed. This wound area showed a poor granulation tissue even 2 weeks later. On the contrary, when covered with an acellular spongy collagen, no necrotic tissue was observed. This wound area showed a more or less irregular granulation tissue at 1 week and then a healthy granulation tissue 2 weeks later. This preliminary comparative study suggests that an acellular spongy collagen is able to function as a more suitable matrix for CDS, compared with Biobrane. The wound area covered with a CDS assumed a moist, shiny, and hyperaemic appearance 1 week after application showing a healthy granulation tissue. The macroscopic evaluations indicate that the CDS is able to prepare a healthy granulation tissue at an earlier stage, compared with the acellular spongy collagen. In addition, the histologic views demonstrate that the CDS is able to prepare a thicker and denser granulation tissue, compared with the acellular spongy collagen. Although the fate of cultured fibroblasts in the CDS on the wound surface within 1 week is not clear, these findings suggest that fibroblasts in CDS are able to provide excellent conditions for wound healing.
    [Abstract] [Full Text] [Related] [New Search]