These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fas-independent cytotoxicity mediated by human CD4+ CTL directed against herpes simplex virus-infected cells.
    Author: Yasukawa M, Ohminami H, Yakushijin Y, Arai J, Hasegawa A, Ishida Y, Fujita S.
    Journal: J Immunol; 1999 May 15; 162(10):6100-6. PubMed ID: 10229852.
    Abstract:
    The present study was undertaken to clarify the mechanisms of cytotoxicity mediated by virus-specific human CD4+ CTLs using the lymphocytes of family members with a Fas gene mutation. CD4+ CTL bulk lines and clones directed against HSV-infected cells were established from lymphocytes of a patient with a homozygous Fas gene mutation and of the patient's mother. HSV-specific CD4+ CTLs generated from lymphocytes of the patient and her mother exerted cytotoxicity against HSV-infected cells from the patient (Fas-/-) and from her mother (Fas+/-) to almost the same degree in an HLA class II-restricted manner. mRNAs for the major mediators of CTL cytotoxicity, Fas ligand, perforin, and granzyme B, were detected in these CD4+ CTLs using the RT-PCR and flow cytometry. The cytotoxicity of the HSV-specific CD4+ CTLs appeared to be Ca2+-dependent and was almost completely inhibited by concanamycin A, a potent inhibitor of the perforin-based cytotoxic pathway. Although the Fas/Fas ligand system has been reported to be the most important mechanism for CD4+ CTL-mediated cytotoxicity in the murine system, the present findings strongly suggest that granule exocytosis, not the Fas/Fas ligand system, is the main pathway for the cytotoxicity mediated by HSV-specific human CD4+ CTLs.
    [Abstract] [Full Text] [Related] [New Search]