These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of transforming growth factor beta1 by nitric oxide.
    Author: Vodovotz Y, Chesler L, Chong H, Kim SJ, Simpson JT, DeGraff W, Cox GW, Roberts AB, Wink DA, Barcellos-Hoff MH.
    Journal: Cancer Res; 1999 May 01; 59(9):2142-9. PubMed ID: 10232601.
    Abstract:
    Many tumor cells or their secreted products suppress the function of tumor-infiltrating macrophages. Tumor cells often produce abundant transforming growth factor beta1 (TGF-beta1), which in addition to other immunosuppressive actions suppresses the inducible isoform of NO synthase. TGF-beta1 is secreted in a latent form, which consists of TGF-beta1 noncovalently associated with latency-associated peptide (LAP) and which can be activated efficiently by exposure to reactive oxygen species. Coculture of the human lung adenocarcinoma cell line A549 and ANA-1 macrophages activated with IFN-gamma plus lipopolysaccharide resulted in increased synthesis and activation of latent TGF-beta1 protein by both A549 and ANA-1 cells, whereas unstimulated cultures of either cell type alone expressed only latent TGF-beta1. We investigated whether exposure of tumor cells to NO influences the production, activation, or activity of TGF-beta1.A549 human lung adenocarcinoma cells exposed to the chemical NO donor diethylamine-NONOate showed increased immunoreactivity of cell-associated latent and active TGF-beta1 in a time- and dose-dependent fashion at 24-48 h after treatment. Exposure of latent TGF-beta1 to solution sources of NO neither led to recombinant latent TGF-beta1 activation nor modified recombinant TGF-beta1 activity. A novel mechanism was observed, however: treatment of recombinant LAP with NO resulted in its nitrosylation and interfered with its ability to neutralize active TGF-beta1. These results provide the first evidence that nitrosative stress influences the regulation of TGF-beta1 and raise the possibility that NO production may augment TGF-beta1 activity by modifying a naturally occurring neutralizing peptide.
    [Abstract] [Full Text] [Related] [New Search]