These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reciprocal effects of interleukin-4 and interferon-gamma on immunoglobulin E-mediated mast cell degranulation: a role for nitric oxide but not peroxynitrite or cyclic guanosine monophosphate. Author: Deschoolmeester ML, Eastmond NC, Dearman RJ, Kimber I, Basketter DA, Coleman JW. Journal: Immunology; 1999 Jan; 96(1):138-44. PubMed ID: 10233688. Abstract: We report that cultured rat peritoneal cells spontaneously synthesize nitric oxide and this is associated with active suppression of mast cell secretory function. Addition of interleukin-4 (IL-4) or the nitric oxide synthase inhibitor N-monomethyl-l-arginine to peritoneal cells inhibited nitric oxide synthesis and enhanced anti-IgE-mediated mast cell degranulation, measured as serotonin release. Interferon-gamma (IFN-gamma) completely overcame the enhancement of serotonin release and suppression of nitrite production induced by IL-4. Over several experiments, with or without IL-4 and/or IFN-gamma, serotonin release correlated inversely with nitrite production. On a cell-for-cell basis, non-mast cells produced approximately 30 times more nitrite than mast cells in peritoneal cell populations, with or without IFN-gamma stimulation. The nitric oxide donor S-nitrosoglutathione inhibited anti-IgE-induced serotonin release from purified mast cells, whereas 8-bromo-cyclic GMP, the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, superoxide dismutase and the peroxynitrite scavenger uric acid, were without effect. We conclude that IL-4 and IFN-gamma reciprocally regulate mast cell secretory responsiveness via control of nitric oxide synthesis by accessory cells; the nitric oxide effect on mast cells is direct but does not involve cyclic GMP or peroxynitrite.[Abstract] [Full Text] [Related] [New Search]