These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nuclear factor kappaB nuclear translocation upregulates c-Myc and p53 expression during NMDA receptor-mediated apoptosis in rat striatum.
    Author: Qin ZH, Chen RW, Wang Y, Nakai M, Chuang DM, Chase TN.
    Journal: J Neurosci; 1999 May 15; 19(10):4023-33. PubMed ID: 10234031.
    Abstract:
    Nuclear factor kappaB (NF-kappaB) appears to participate in the excitotoxin-induced apoptosis of striatal medium spiny neurons. To elucidate molecular mechanisms by which this transcription factor contributes to NMDA receptor-triggered apoptotic cascades in vivo, rats were given the NMDA receptor agonist quinolinic acid (QA) by intrastriatal infusion, and the role of NF-kappaB in the induction of apoptosis-related genes and gene products was evaluated. QA administration induced time-dependent NF-kappaB nuclear translocation. The nuclear NF-kappaB protein after QA treatment was comprised mainly of p65 and c-Rel subunits as detected by gel supershift assay. Levels of c-Myc and p53 mRNA and protein were markedly increased at the time of QA-induced NF-kappaB nuclear translocation. Immunohistochemical analysis showed that c-Myc and p53 induction occurred in the excitotoxin-sensitive medium-sized striatal neurons. NF-kappaB nuclear translocation was blocked in a dose-dependent manner by the cell-permeable recombinant peptide NF-kappaB SN50, but not by the NF-kappaB SN50 control peptide. NF-kappaB SN50 significantly inhibited the QA-induced elevation in levels of c-Myc and p53 mRNA and protein. Pretreatment or posttreatment with NF-kappaB SN50, but not the control peptide, also substantially reduced the intensity of QA-induced internucleosomal DNA fragmentation. The results suggest that NF-kappaB may promote an apoptotic response in striatal medium-sized neurons to excitotoxic insult through upregulation of c-Myc and p53. This study also provides evidence indicating an unique signaling pathway from the cytoplasm to the nucleus, which regulates p53 and c-Myc levels in these neurons during apoptosis.
    [Abstract] [Full Text] [Related] [New Search]