These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Accessibility of phospholipids in the chromaffin granule membrane. Author: Buckland RM, Radda GK, Shennan CD. Journal: Biochim Biophys Acta; 1978 Nov 16; 513(3):321-37. PubMed ID: 102348. Abstract: 1. The accessibility of phospholipids in the membrane of the adrenomedullary storage vesicles (chromaffin granules) has been studied. 2. The reaction of 2,4,6-trinitrobenzenesulphonic acid with both intact granules and their ghosts, results in the labelling of 70% of the phosphatidylethanolamine. 3. The action of phospholipase A2 (from bee venom), phospholipase C (from Bacillus cereus) and sphingomyelinase C (from Staphylococcus aureus) on granules and their ghosts was followed as a function of time. No significant difference was observed between the intact granules and their ghosts. 4. In the intact granules the various treatments led to varying amounts of lysis although again no evidence was obtained that such lysis in any way increased the amount of accessible phospholipid. 5. Highly purified granule preparations were also compared with the so-called "large granule" fraction and no significant differences were detected. 6. Approx. 67% of phosphatidylethanolamine + phosphatidic acid, 50% of phosphatidylserine + phosphatidylinositol, 65% of phosphatidylcholine and 20% of sphingomyelin is accessible to enzymatic degradation. In total, approx. 50% of all the phospholipids reacted. 7. It is also shown that, unlike in enzymatic treatment, all the phosphatidylcholine can be exchanged in the presence of a phospholipid exchange protein (prepared from beef liver). 8. It is concluded that transmembrane movement of phosphatidylcholine is slow in isolated membranes of chromaffin granules. The presence of the exchange protein, however, in conjunction with membrane proteins and specific phospholipid arrangements may catalyse this transmembrane movement.[Abstract] [Full Text] [Related] [New Search]