These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fluvastatin: a review of its use in lipid disorders.
    Author: Langtry HD, Markham A.
    Journal: Drugs; 1999 Apr; 57(4):583-606. PubMed ID: 10235694.
    Abstract:
    UNLABELLED: Fluvastatin is an HMG-CoA reductase inhibitor used to treat patients with hypercholesterolaemia. Since fluvastatin was last reviewed in Drugs, trials have shown its efficacy in the secondary prevention of coronary heart disease (CHD) events and death and have expanded knowledge of its effects in primary CHD prevention and its mechanisms of activity. In addition to reducing total (TC) and low density lipoprotein (LDL-C) cholesterol, fluvastatin has antiatherogenic, antithrombotic and antioxidant effects, can improve vascular function, and may have immunomodulatory effects. Although fluvastatin interacts with bile acid sequestrants (requiring separation of doses), its pharmacokinetics permit oral administration to most patient groups. Fluvastatin is well tolerated, with adverse effects usually mild and transient. Use of fluvastatin to reduce lipids in patients with primary hypercholesterolaemia is well established. Its effects are similar in most patient groups, with 20 to 80 mg/day reducing LDL-C by 22 to 36%, triglycerides (TG) by 12 to 18% and apolipoprotein B by 19 to 28% and increasing high density lipoprotein cholesterol by 3.3 to 5.6%. Attempts to find fluvastatin dosages with efficacy equivalent to that of other HMG-CoA reductase inhibitors produce variable results, but larger per-milligram fluvastatin dosages are needed when patients switch from other HMG-CoA reductase inhibitors. Combinations of fluvastatin with fibric acid derivatives and bile acid sequestrants produce additive effects. Small noncomparative studies suggest fluvastatin reduces LDL-C in patients with hypercholesterolaemia secondary to kidney disorders by < or = 40.5% and with type 2 diabetes mellitus by < or = 32%. Three large randomised, double-blind trials show fluvastatin can help prevent CHD events or death and slow disease progression in patients with CHD with or without hypercholesterolaemia. In the Fluvastatin Angiographic Restenosis trial in patients undergoing balloon angioplasty, fluvastatin 80 mg/day for 40 weeks reduced the postangioplasty rate of deaths plus myocardial infarctions (1.5% vs 4% with placebo, p < 0.025) without altering vessel luminal diameters. In the Lipoprotein and Coronary Atherosclerosis Study in patients with coronary artery stenosis, luminal diameter reduced to a significantly lesser extent after fluvastatin 20 mg twice daily than placebo after 2.5 years (-0.028 vs -0.01 mm, p < 0.005). The Lescol in Symptomatic Angina study found reductions in all cardiac events or cardiac death in patients after 1 year of fluvastatin 40 mg/day (1.6% vs 5.6% for placebo, p < 0.05). CONCLUSIONS: An evolving pattern of data suggests that, in addition to its well established efficacy and cost effectiveness in reducing hypercholesterolaemia, fluvastatin may now also be considered for use in the secondary prevention of CHD.
    [Abstract] [Full Text] [Related] [New Search]