These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Antioxidant effect of dipyridamole and its derivative RA-25 in mitochondria: correlation of activity and location in the membrane.
    Author: Nepomuceno MF, de Oliveira Mamede ME, Vaz de Macedo D, Alves AA, Pereira-da-Silva L, Tabak M.
    Journal: Biochim Biophys Acta; 1999 May 12; 1418(2):285-94. PubMed ID: 10320680.
    Abstract:
    Dipyridamole (DIP), a coronary vasodilator, presents coactivator activity for a number of antitumor drugs as well as antioxidant activity in membrane systems. DIP and derivatives interact with membrane systems such as micelles, phospholipid monolayers and vesicles. The antioxidant effect of DIP and several derivatives upon iron-induced lipoperoxidation on mitochondria has been reported and a good correlation between the hydrophobicity and their protective effect was found (M.F. Nepomuceno et al., Free Radic. Biol. Med., 23 (1997) 1046-1054). In the present work an effort is made to better understand the role of DIP as inhibitor of Fe2+-induced lipid peroxidation in mitochondria. At low concentration, no significant effect on either state IV or state III respiration was found, discarding a possible direct interaction of DIP or RA-25 with the peripheral benzodiazepine receptor. The association constants for DIP and RA-25 in mitochondria were estimated, being 0.7 (mg/ml)-1 for DIP and 0.2 (mg/ml)-1 for RA-25. Oxygen consumption studies in the presence of FeSO4 showed that the antioxidant effect of DIP or RA-25 did not involved the initial step of Fe2+ oxidation. Our data strongly support the hypothesis that the antioxidant effect of both DIP and RA-25 is related to their partition in the lipid phase of the mitochondrial membrane and not to a specific interaction with membrane proteins. This protection may be due either to a direct inhibition of the propagation steps or a scavenger effect on the radicular species that would trigger the peroxidative process.
    [Abstract] [Full Text] [Related] [New Search]