These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: GDNF: a novel factor with therapeutic potential for neurodegenerative disorders.
    Author: Walton KM.
    Journal: Mol Neurobiol; 1999 Feb; 19(1):43-59. PubMed ID: 10321971.
    Abstract:
    The identification of novel factors that promote neuronal survival could have profound effects on developing new therapeutics for neurodegenerative disorders. Glial cell line-derived neurotrophic factor (GDNF) is a novel protein purified and cloned based on its marked ability to promote dopaminergic neuronal function. GDNF, now known to be the first identified member of a family of factors, signals through the previously known receptor tyrosine kinase, Ret. Unlike most ligands for receptor tyrosine kinases, GDNF does not bind and activate Ret directly, but requires the presence of GPI-linked coreceptors. There are several coreceptors with differing affinities for the GDNF family members. The profile of coreceptors in a cell may determine which factor preferentially activates Ret. In vivo differences in localization of the GDNF family members, its coreceptors and Ret suggest this ligand/receptor interaction has extensive and multiple functions in the CNS as well as in peripheral tissues. GDNF promotes survival of several neuronal populations both in vitro and in vivo. Dopaminergic neuronal survival and function are preserved by GDNF in vivo when challenged by the toxins MPTP and 6-hydroxydopamine. Furthermore, GDNF improves the symptoms of pharmacologically induced Parkinson's disease in monkeys. Several motor neuron populations isolated in vitro are also rescued by GDNF. In vivo, GDNF protects these neurons from programmed cell death associated with development and death induced by neuronal transection. These experiments suggest that GDNF may provide significant therapeutic opportunities in several neurodegenerative disorders.
    [Abstract] [Full Text] [Related] [New Search]