These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The role of scaffolding proteins in the assembly of the small, single-stranded DNA virus phiX174. Author: Dokland T, Bernal RA, Burch A, Pletnev S, Fane BA, Rossmann MG. Journal: J Mol Biol; 1999 May 14; 288(4):595-608. PubMed ID: 10329166. Abstract: An empty precursor particle called the procapsid is formed during assembly of the single-stranded DNA bacteriophage phiX174. Assembly of the phiX174 procapsid requires the presence of the two scaffolding proteins, D and B, which are structural components of the procapsid, but are not found in the mature virion. The X-ray crystallographic structure of a "closed" procapsid particle has been determined to 3.5 A resolution. This structure has an external scaffold made from 240 copies of protein D, 60 copies of the internally located B protein, and contains 60 copies of each of the viral structural proteins F and G, which comprise the shell and the 5-fold spikes, respectively. The F capsid protein has a similar conformation to that seen in the mature virion, and differs from the previously determined 25 A resolution electron microscopic reconstruction of the "open" procapsid, in which the F protein has a different conformation. The D scaffolding protein has a predominantly alpha-helical fold and displays remarkable conformational variability. We report here an improved and refined structure of the closed procapsid and describe in some detail the differences between the four independent D scaffolding proteins per icosahedral asymmetric unit, as well as their interaction with the F capsid protein. We re-analyze and correct the comparison of the closed procapsid with the previously determined cryo-electron microscopic image reconstruction of the open procapsid and discuss the major structural rearrangements that must occur during assembly. A model is proposed in which the D proteins direct the assembly process by sequential binding and conformational switching.[Abstract] [Full Text] [Related] [New Search]