These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The effects of low-flow ischemia on K+ fluxes in isolated rat hearts assessed by 87Rb NMR.
    Author: Kupriyanov VV, Xiang B, Kuzio B, Deslauriers R.
    Journal: J Mol Cell Cardiol; 1999 Apr; 31(4):817-26. PubMed ID: 10329209.
    Abstract:
    This study investigated whether Na+/K+ ATPase is inhibited and KATP channels activated during low flow ischemia (LFI) by monitoring Rb+ uptake and efflux from rat hearts using 87Rb NMR. In the uptake experiments, isolated Langendorff perfused hearts were exposed to Rb+-containing Krebs-Henseleit buffer (2.14 m m+3.76 m m K+) for 60 min. When Rb+ uptake started the flow of perfusate was decreased from 10 to 1 ml/min/g wet weight for 44 min and then returned to normal. The rate of Rb+ uptake and its equilibrium level decreased to 40 and 65% of the control (no ischemia) levels, respectively. Phosphocreatine and cytoplasmic [ATP]/[ADP] measured by 31P NMR decreased by half, intracellular pH (pHi) decreased to 6.8+/-0.1, and Pi increased two-fold. In wash-out experiments the hearts were pre-loaded with Rb+ for 30 min following which Rb+ wash-out was initiated. Four minutes later, flow was either decreased in the absence or presence of 10 microm 2,4-dinitrophenol (DNP), or 0.1 m m DNP was infused at normal flow for 20 min. LFI resulted in biphasic Rb+ efflux; during the initial phase, which lasted 8 min, the rate constant (kx10(3)/min) did not differ from control (43+/-3). The efflux was slightly inhibited by 5 microm glibenclamide (36+/-6) or 100 microm 5-hydroxydecanoic acid (32+/-4). In the second phase k decreased to half its initial value (18+/-2). More significant changes in energy state caused by LFI+10 microm DNP had no effect on the efflux kinetics. Similar changes in energy state induced by 0.1 m m DNP at normal flow were associated with activation of Rb+ efflux (71+/-5). DNP-stimulated Rb+ efflux was inhibited by acidosis (pHi approximately pHe = 6.7) produced with 5 m m morpholinoethane sulphonic acid (53+/-5) and by 100 microm adenosine (58+/-7). We suggest that accumulation of ischemic products such as H+and adenosine decreases activation of KATP channels in rat hearts.
    [Abstract] [Full Text] [Related] [New Search]