These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Agonist-stimulated calcium entry in primary cultures of human cerebral microvascular endothelial cells. Author: Li L, Bressler B, Prameya R, Dorovini-Zis K, Van Breemen C. Journal: Microvasc Res; 1999 May; 57(3):211-26. PubMed ID: 10329249. Abstract: Primary cultures of human cerebral microvascular endothelial cells (HCMEC) were loaded with fura-2. The intracellular free Ca2+ concentration ([Ca2+]i) was measured by digital imaging microscopy. Agonists ATP (100 micro), thrombin (10 units/ml), and histamine (25 microM) induced a transient [Ca2+]i increase. Histamine (100 microM) induced a biphasic [Ca2+]i increase with an initial [Ca2+]i peak followed by a [Ca2+]i plateau. The [Ca2+]i plateau was blocked by the receptor-operated Ca2+ channel (ROC) blockers SK&F 96365 and NCDC, indicating a contribution by Ca2+ influx through ROC to the [Ca2+]i plateau. However, this [Ca2+]i plateau was not blocked by the voltage-gated Ca2+ channel (VGC) blocker diltiazem (DTZ). Depolarization with 80K+ or application of the VGC agonist BAY K 8644 did not alter the resting [Ca2+]i; but 80K+ reduced the histamine (100 microM) induced [Ca2+]i plateau. These results show that HCMEC are devoid of functional VGC. Thus the membrane potential (Em) regulates Ca2+ entry mainly by enhancing the electrochemical Ca2+ gradient, such that hyperpolarization increases while depolarization decreases [Ca2+]i. Blockade of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) by CPA increased [Ca2+]i. This effect was dependent on extracellular Ca2+ and reduced by iberiotoxin (IBTX) blockade of Ca2+-activated K+ channels (Kca), suggesting a role for Kca in regulating Ca2+ influx. Ca2+ is the principal activator of endothelial nitric oxide synthase (eNOS), which stimulates cyclic GMP production. The final result that the eNOS inhibitor L-NAME enhanced the histamine (100 microM) induced [Ca2+]i plateau suggests a negative feedback loop (via cGMP) of endothelial NO on its own synthesis in the regulation of endothelial [Ca2+]i signal.[Abstract] [Full Text] [Related] [New Search]