These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of the ryanodine receptor calcium channel in the sarcoplasmic reticulum of skeletal muscle by an ADP/ATP translocase inhibitor, atractyloside.
    Author: Yamaguchi N, Kagari T, Kasai M.
    Journal: Biochem Biophys Res Commun; 1999 May 10; 258(2):247-51. PubMed ID: 10329372.
    Abstract:
    The effects of an inhibitor of ADP/ATP translocase (AAT) mainly expressed in the mitochondria inner membrane, atractyloside (ATR), on the gating property of the Ca2+ channels in the sarcoplasmic reticulum (SR) vesicles from the rabbit skeletal muscle were investigated using ion flux measurement and single channel recording. At 10 microM of cytoplasmic Ca2+, ATR decreased the rate constant of choline+ influx through the Ca2+ channels up to about 60% and perfectly inhibited about half the population of single Ca2+ channels incorporated into planar bilayers. Furthermore, the inhibition of the Ca2+ channels by ATR was effective at lower Ca2+. These results support the previous results that AAT exists in the skeletal muscle SR and plays a key role in the Ca2+ mobilization of the skeletal muscle cell [Yamaguchi, N., and Kasai, M. (1998) Biochem. J. 335, 541-547], and the number of Ca2+ channels regulated by AAT is thought to depend on the cytoplasmic Ca2+ concentration.
    [Abstract] [Full Text] [Related] [New Search]