These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regeneration of the tyrosyl radical in native or p-butoxyphenol-treated mouse ribonucleotide reductase R2 protein.
    Author: Davydov A, Gräslund A.
    Journal: Biochem Biophys Res Commun; 1999 May 10; 258(2):322-5. PubMed ID: 10329385.
    Abstract:
    The regeneration of the tyrosyl radical in chemically reduced native or p-butoxyphenol-treated radical free forms of mouse ribonucleotide reductase R2 protein has been studied. Chemical reduction has been achieved by treatment with light-activated flavin compounds: deazaflavin, flavin mononucleotide, or deazaflavin with methylviologen as mediator. The admission of air to the flavin reduced mouse R2 protein results in regeneration of up to 59% of the initial tyrosyl radical contents, whereas not more than 6% could be regenerated in the p-butoxyphenol-treated form. The mixed-valent EPR signal generated in the p-butoxyphenol-treated mouse R2 protein is different from the spectrum observed after flavin reduction in the native mouse R2 protein, indicating that treatment of the protein with p-butoxyphenol results in a structural rearrangement of the diferric/radical site. The presence of 0.1 mM Fe(II) in the anaerobic protein/buffer solution significantly improves the regeneration of tyrosyl radical upon admission of air to the flavin reduced mouse R2 protein, but less to the protein treated with p-butoxyphenol.
    [Abstract] [Full Text] [Related] [New Search]