These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of adenosine in local metabolic coronary vasodilation.
    Author: Yada T, Richmond KN, Van Bibber R, Kroll K, Feigl EO.
    Journal: Am J Physiol; 1999 May; 276(5):H1425-33. PubMed ID: 10330224.
    Abstract:
    Adenosine has been postulated to mediate the increase in coronary blood flow when myocardial oxygen consumption is increased. The aim of this study was to evaluate the role of adenosine when myocardial oxygen consumption was augmented by cardiac paired-pulse stimulation without the use of catecholamines. In 10 anesthetized closed-chest dogs, coronary blood flow was measured in the left circumflex coronary artery, and myocardial oxygen consumption was calculated using the arteriovenous oxygen difference. Cardiac interstitial adenosine concentration was estimated from coronary venous and arterial plasma adenosine measurements using a previously described multicompartmental, axially distributed mathematical model. Paired stimulation increased heart rate from 55 to 120 beats/min, increased myocardial oxygen consumption 104%, and increased coronary blood flow 92%, but the estimated interstitial adenosine concentration remained below the threshold for coronary vasodilation. After adenosine-receptor blockade with 8-phenyltheophylline (8-PT), coronary blood flow and myocardial oxygen consumption were not significantly different from control values. Paired-pulse pacing during adenosine-receptor blockade resulted in increases in myocardial oxygen consumption and coronary blood flow similar to the response before 8-PT. Coronary venous and estimated interstitial adenosine concentration did not increase to overcome the adenosine blockade by 8-PT. These results demonstrate that adenosine is not required for the local metabolic control of coronary blood flow during pacing-induced increases in myocardial oxygen consumption.
    [Abstract] [Full Text] [Related] [New Search]