These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Changes in intracellular Na+ and pH in rat heart during ischemia: role of Na+/H+ exchanger. Author: Park CO, Xiao XH, Allen DG. Journal: Am J Physiol; 1999 May; 276(5):H1581-90. PubMed ID: 10330242. Abstract: The role of the Na+/H+ exchanger in rat hearts during ischemia and reperfusion was investigated by measurements of intracellular Na+ concentration ([Na+]i) and intracellular and extracellular pH. Under our standard conditions (2-Hz stimulation), 10 min of ischemia caused no significant rise in [Na+]i but an acidosis of 1.0 pH unit, suggesting that the Na+/H+ exchanger was inactive during ischemia. This was confirmed by showing that the Na+/H+ exchange inhibitor methylisobutyl amiloride (MIA) had no effect on [Na+]i or on intracellular pH during ischemia. However, there was a short-lived increase in [Na+]i of 8.2 +/- 0.6 mM on reperfusion, which was reduced by MIA, showing that the Na+/H+ exchanger became active on reperfusion. To investigate the role of metabolic changes, we measured [Na+]i during anoxia. The [Na+]i did not change during 10 min of anoxia, but there was a small, transient rise of [Na+]i on reoxygenation, which was inhibited by MIA. In addition, we show that the Na+/H+ exchanger, tested by sodium lactate exposure, was inhibited during anoxia. These results show that the Na+/H+ exchanger is inhibited during ischemia and anoxia, probably by an intracellular metabolic mechanism. The exchanger activates rapidly on reperfusion and can cause a rapid rise in [Na+]i.[Abstract] [Full Text] [Related] [New Search]