These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Association of apoptosis with the inhibition of extracellular signal-regulated protein kinase activity in the tumor necrosis factor alpha-resistant ovarian carcinoma cell line UCI 101.
    Author: Yazlovitskaya EM, Pelling JC, Persons DL.
    Journal: Mol Carcinog; 1999 May; 25(1):14-20. PubMed ID: 10331740.
    Abstract:
    Tumor necrosis factor-alpha (TNF alpha) can function as both an autocrine and a paracrine growth factor and may therefore play a role in ovarian tumor progression. TNF alpha initiates multiple cellular responses, many of which are mediated through the mitogen-activated protein kinase pathways, which transduce signals from the TNF alpha receptors through the cytoplasm to the nucleus, resulting in regulation of gene expression. We examined the role of c-jun N-terminal kinase 1 (JNK1) and extracellular signal-regulated protein kinase (ERK) 1 and 2 in the cellular growth response to TNF alpha in the ovarian carcinoma cell line UCI 101. JNK1 activity was increased to a maximum level ninefold above the basal level after 10-20 min of treatment with 10 ng/mL TNF alpha. A maximum threefold induction of ERK1/2 activity was observed after 1 min of treatment. At concentrations up to 100 ng/mL, TNF alpha had neither a stimulatory nor an inhibitory effect on growth of UCI 101 cells. However, inhibition of TNF alpha-induced ERK1/2 activity by the MAP/ERK kinase 1 inhibitor PD 98059 resulted in 60% inhibition of cell growth in TNF alpha-treated UCI 101 cells. This decrease in cell growth was accompanied by apoptosis, as demonstrated by the presence of a 180-bp DNA ladder. Thus, the inhibition of TNF alpha-induced ERK1/2 activity was associated with induction of apoptosis in the TNF alpha-resistant cell line UCI 101. Inhibition of TNF alpha-induced ERK1/2 activity was accompanied by a subsequent transient increase in TNF alpha-induced JNK1 activity. The significance of this increase with respect to apoptosis induction remains to be determined. These findings demonstrated that ERK1/2 activity can modulate cellular sensitivity to TNF alpha and suggested that the balance between the levels of ERK1/2 and JNK1 activation may be critical in the cellular growth response to TNF alpha.
    [Abstract] [Full Text] [Related] [New Search]