These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Activation of the murine dihydrofolate reductase promoter by E2F1. A requirement for CBP recruitment. Author: Fry CJ, Pearson A, Malinowski E, Bartley SM, Greenblatt J, Farnham PJ. Journal: J Biol Chem; 1999 May 28; 274(22):15883-91. PubMed ID: 10336493. Abstract: The E2F family of heterodimeric transcription factors plays an important role in the regulation of gene expression at the G1/S phase transition of the mammalian cell cycle. Previously, we have demonstrated that cell cycle regulation of murine dihydrofolate reductase (dhfr) expression requires E2F-mediated activation of the dhfr promoter in S phase. To investigate the mechanism by which E2F activates an authentic E2F-regulated promoter, we precisely replaced the E2F binding site in the dhfr promoter with a Gal4 binding site. Using Gal4-E2F1 derivatives, we found that E2F1 amino acids 409-437 contain a potent core transactivation domain. Functional analysis of the E2F1 core domain demonstrated that replacement of phenylalanine residues 413, 425, and 429 with alanine reduces both transcriptional activation of the dhfr promoter and protein-protein interactions with CBP, transcription factor (TF) IIH, and TATA-binding protein (TBP). However, additional amino acid substitutions for phenylalanine 429 demonstrated a strong correlation between activation of the dhfr promoter and binding of CBP, but not TFIIH or TBP. Finally, transactivator bypass experiments indicated that direct recruitment of CBP is sufficient for activation of the dhfr promoter. Therefore, we suggest that recruitment of CBP is one mechanism by which E2F activates the dhfr promoter.[Abstract] [Full Text] [Related] [New Search]