These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Formation of a major DNA adduct of the mitomycin metabolite 2,7-diaminomitosene in EMT6 mouse mammary tumor cells treated with mitomycin C. Author: Palom Y, Belcourt MF, Kumar GS, Arai H, Kasai M, Sartorelli AC, Rockwell S, Tomasz M. Journal: Oncol Res; 1998; 10(10):509-21. PubMed ID: 10338154. Abstract: Treatment of EMT6 mouse mammary tumor cells with [3H]mitomycin C (MC) results in the formation of six major DNA adducts, as described earlier using an HPLC assay of 3H-labeled products of enzymatic hydrolysis of DNA isolated from MC-treated cells. Four of these adducts were identified as monofunctional and bifunctional guanine-N2 adducts in the minor groove of DNA. In order to establish relationships between individual types of MC-DNA adducts and biological responses it is necessary to identify all of the adducts formed in cells. To this end we have now identified a predominant, previously unknown adduct formed in MC-treated EMT6 cells as a derivative not of MC, but of 2,7-diaminomitosene (2,7-DAM), the major bioreductive metabolite of MC. Rigorous proof demonstrates that it is a DNA major groove, guanine-N7 adduct of 2,7-DAM, linked at C-10 to DNA. The adduct is relatively stable at ambient temperature, but is readily depurinated upon heating. Its isolation from MC-treated cells indicates that MC is reductively metabolized to 2,7-DAM, which then undergoes further reductive activation to alkylate DNA, along with the parent MC. Low MC:DNA ratios were identified as a critical factor promoting 2,7-DAM adduct formation in an in vitro model calf thymus DNA/ MC/reductase model system, as well as in MC-treated EMT6 cells. The 2,7-DAM-guanine-N7 DNA adduct appears to be relatively noncytotoxic, as indicated by the dramatically lower cytotoxicity of 2,7-DAM in comparison with MC in EMT6 cells. Like MC, 2,7-DAM exhibited slightly greater cytotoxicity to cells treated under hypoxic as compared to aerobic conditions. However, 2,7-DAM was markedly less cytotoxic than MC under both aerobic and hypoxic conditions. Thus, metabolic reduction of MC to 2,7-DAM represents a detoxification process. The differential effects of MC-DNA and 2,7-DAM-DNA adducts support the concept that specific structural features of the DNA damage may play a critical role in the cytotoxic response to a DNA-targeted chemotherapeutic agent.[Abstract] [Full Text] [Related] [New Search]