These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Production of beta-defensin antimicrobial peptides by the oral mucosa and salivary glands.
    Author: Mathews M, Jia HP, Guthmiller JM, Losh G, Graham S, Johnson GK, Tack BF, McCray PB.
    Journal: Infect Immun; 1999 Jun; 67(6):2740-5. PubMed ID: 10338476.
    Abstract:
    beta-Defensins are cationic peptides with broad-spectrum antimicrobial activity that are produced by epithelia at mucosal surfaces. Two human beta-defensins, HBD-1 and HBD-2, were discovered in 1995 and 1997, respectively. However, little is known about the expression of HBD-1 or HBD-2 in tissues of the oral cavity and whether these proteins are secreted. In this study, we characterized the expression of HBD-1 and HBD-2 mRNAs within the major salivary glands, tongue, gingiva, and buccal mucosa and detected beta-defensin peptides in salivary secretions. Defensin mRNA expression was quantitated by RNase protection assays. HBD-1 mRNA expression was detected in the gingiva, parotid gland, buccal mucosa, and tongue. Expression of HBD-2 mRNA was detected only in the gingival mucosa and was most abundant in tissues with associated inflammation. To test whether beta-defensin expression was inducible, gingival keratinocyte cell cultures were treated with interleukin-1beta (IL-1beta) or bacterial lipopolysaccharide (LPS) for 24 h. HBD-2 expression increased approximately 16-fold with IL-1beta treatment and approximately 5-fold in the presence of LPS. Western immunoblotting, liquid chromatography, and mass spectrometry were used to identify the HBD-1 and HBD-2 peptides in human saliva. Human beta-defensins are expressed in oral tissues, and the proteins are secreted in saliva; HBD-1 expression was constitutive, while HBD-2 expression was induced by IL-1beta and LPS. Human beta-defensins may play an important role in the innate defenses against oral microorganisms.
    [Abstract] [Full Text] [Related] [New Search]