These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Expansion of DNA repeats in Escherichia coli: effects of recombination and replication functions.
    Author: Morag AS, Saveson CJ, Lovett ST.
    Journal: J Mol Biol; 1999 May 28; 289(1):21-7. PubMed ID: 10339402.
    Abstract:
    Duplication or expansion of directly repeated sequence elements is associated with a number of human genetic diseases. To study the mechanisms of repeat expansion, we have developed a plasmid assay in Escherichia coli. Our assay involves two simple repeats of 787 bp in length; expansion to three or more copies of the repeat can be selected by restoration of an intact tetracycline-resistance gene. Expansions occurred at relatively high rates, >10(-5), in the population. Both RecA-dependent recombination and RecA-independent slipped misalignments contributed to the observed expansion events. Mutations that impair DNA polymerase III (DnaE, DnaQ subunits) or the replication fork helicase, DnaB, stimulated both RecA-dependent and RecA-independent expansion events. In these respects, the properties of repeat expansion resemble repeat deletion and suggest that difficulties in DNA replication may trigger both classes of rearrangements. About 20% of the RecA-independent expansion events are accompanied by reciprocal sister-chromosome exchange, producing dimeric plasmids carrying one triplicated and one deleted locus. These products are explained by a model involving misaligned strands across the replication fork. This model predicts that the location of a replication stall site may govern the types of resulting rearrangements. The specific location of such a stall site can also, in theory, account for propensity towards expansion or deletion of repeat arrays. This may have relevance to trinucleotide repeat expansion in human genetic disease.
    [Abstract] [Full Text] [Related] [New Search]