These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Multiple high cell dose injections of normal marrow into newborn jaundiced mice dramatically prolong life despite transient repopulation.
    Author: Barker JE, Kaysser-Kranich TM, Hamblen N, Deveau S.
    Journal: Exp Hematol; 1999 May; 27(5):966-71. PubMed ID: 10340413.
    Abstract:
    Jaundiced (ja/ja) mice have a severe hemolytic anemia caused by deficiency of the erythroid cytoskeletal protein beta-spectrin. Unless they are transfused, 99% of the mutant mice die after birth. Here, we test a new therapy involving multiple, high cell dose marrow injections into newborn non-ablated recipients. The ja/ja and normal newborn mice were injected intravenously with a total of 8.7 x 10(6) genetically marked +/+ marrow cells/g body weight. Donor and host red blood cells were quantified and the status of the recipients monitored. The jaundiced but not the normal recipients had up to 57% replacement with donor red cells by 9 weeks. The treatment significantly increased red cell counts and extended the average lifespan to 5 months beyond that previously reported for ja/ja mice transfused at birth. Replacement was limited to red cells. The donor cells disappeared in three of five mutant mice alive beyond 27 weeks. Marrow from a 48-month-old ja/ja recipient no longer positive for donor cells was injected into a secondary host. The recipient acquired the blood phenotype of the primary ja/ja host. The possibility that the marker was not well tolerated following multiple cell injections was investigated in normal adult mice injected with a total of 5.3 x 10(6) marrow cells/g body weight. Recipients became chimeric (>38% donor red and white cells) long-term (>12 months). The results indicate donor stem cells (a) prolong life in the jaundiced mice, but (b) do not survive long-term when injected into newborn mice. We conclude that destructive mechanisms may not be limited to ja/ja red cells.
    [Abstract] [Full Text] [Related] [New Search]