These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Instability of torsion during smooth asymmetric vergence.
    Author: Ivins JP, Porrill J, Frisby JP.
    Journal: Vision Res; 1999 Mar; 39(5):993-1009. PubMed ID: 10341951.
    Abstract:
    Several categories of torsional eye movements obey Listing's law; however, systematic deviations from this law occur during vergence. Two kinematic models attempt to incorporate these deviations, both of which are supported by experimental evidence; however, they lead to different torsion predictions. These discrepancies have been explained in terms of experimental procedures, but it now seems likely from several recent studies that individual differences in torsion patterns may also be important. This study therefore examines the variation of torsion during a smooth asymmetric vergence task in which a fixation target was moved along the line-of-sight of the right eye at 15 degrees elevation; each of five subjects observed five trials of both inward and outward target motion, repeated in two sessions several weeks apart. There were no significant group differences in left or right eye torsion between trials or sessions, suggesting that monocular torsion patterns were relatively stable over time. When examined more closely, however, the torsion patterns shown by some individuals did vary for inward versus outward target motion. Hence, monocular torsion was idiosyncratic and depended on the direction in which fixation was changing (convergence or divergence). In a binocular analysis, cycloversion varied dramatically between subjects and depended on the direction of target motion; however, this was not the case for cyclovergence. In summary, cyclovergence is relatively stable and depends on where the eyes are looking, whereas cycloversion (and hence monocular torsion) is relatively unstable and depends on how they came to be in that particular horizontal and vertical orientation. These findings help to explain the controversy surrounding the torsional behaviour of the human eye during vergence.
    [Abstract] [Full Text] [Related] [New Search]