These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of growth hormone-releasing hormone receptor messenger ribonucleic acid expression by glucocorticoids in MtT-S cells and in the pituitary gland of fetal rats.
    Author: Nogami H, Inoue K, Moriya H, Ishida A, Kobayashi S, Hisano S, Katayama M, Kawamura K.
    Journal: Endocrinology; 1999 Jun; 140(6):2763-70. PubMed ID: 10342867.
    Abstract:
    Regulation of GH-releasing hormone receptor (GHRH-R) messenger RNA (mRNA) expression was studied, with the ribonuclease protection assay, in the fetal rat pituitary gland and in MtT-S clonal cells. GHRH-R mRNA was first detected on embryonic day (E)19 and increased rapidly thereafter, to reach a maximum at E21. Incubation of E17 or E18 pituitaries with 50 nM dexamethasone (DEX), a synthetic glucocorticoid, induced GHRH-R mRNA expression, suggesting that glucocorticoids play a pivotal role in the developmental expression of this mRNA. In E19 pituitaries, 24 h treatment with DEX increased GHRH-R mRNA by 60%, and GH mRNA by 76%, but did not affect pit-1 mRNA level, suggesting that the effect of DEX is specific for expressions of GH mRNA and GHRH-R mRNA. The accumulation of GHRH-R mRNA by DEX was time dependent, and it was slightly enhanced by the protein synthesis inhibitor, puromycin (100 microM). In MtT-S cells (a pituitary cell line established from an estrogen-induced tumor), DEX induced GHRH-R mRNA expression within 2 h in a dose-dependent manner. This induction was augmented by puromycin (100 microM) or cycloheximide (3.5 microM). However, the RNA synthesis inhibitor Actinomycin D (1 microM) completely inhibited GHRH-R mRNA accumulation in response to either DEX or DEX plus puromycin, suggesting that glucocorticoids induce GHRH-R mRNA mainly through stimulation of mRNA transcription. These results suggest: that GHRH-R mRNA accumulation in the fetal pituitary gland of rats normally occurs at E19, probably because of the direct action of glucocorticoids on the pituitary gland, to stimulate GHRH-R mRNA transcription; and that the expression of glucocorticoid receptors is an important event in GH cell development in rats. Accordingly, immunocytochemical results suggest an increase in glucocorticoid receptors in immature GH cells between E17 and E18. The present results also imply that MtT-S cells may be a good model in which to further study the molecular mechanisms of the regulation of GHRH-R gene expression.
    [Abstract] [Full Text] [Related] [New Search]