These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Different types of maize histone deacetylases are distinguished by a highly complex substrate and site specificity.
    Author: Kölle D, Brosch G, Lechner T, Pipal A, Helliger W, Taplick J, Loidl P.
    Journal: Biochemistry; 1999 May 25; 38(21):6769-73. PubMed ID: 10346897.
    Abstract:
    Enzymes involved in histone acetylation have been identified as important transcriptional regulators. Maize embryos contain three histone deacetylase families: RPD3-type deacetylases (HD1-B), nucleolar phosphoproteins of the HD2 family, and a third form unrelated to RPD3 and HD2 (HD1-A). Here we first report on the specificity of deacetylases for core histones, acetylated histone H4 subspecies, and acetylated H4-lysine residues. HD1-A, HD1-B, and HD2 deacetylate all four core histones, although with different specificity. However, experiments with histones from different sources (hyperacetylated MELC and chicken histones) using antibodies specific for individually acetylated H4-lysine sites indicate that the enzymes recognize highly distinct acetylation patterns. Only RPD3-type deacetylase HD1-B is able to deacetylate the specific H4 di-acetylation pattern (position 12 and 5) introduced by the purified cytoplasmic histone acetyltransferase B after incubation with pure nonacetylated H4 subspecies. HD1-A and HD2 exist as phosphorylated forms. Dephosphorylation has dramatic, but opposite effects; whereas HD2 loses enzymatic activity upon dephosphorylation, HD1-A is activated with a change of specificity against acetylated H4 subspecies. The data suggest that different types of deacetylases interact with different and highly specific acetylation patterns on nucleosomes.
    [Abstract] [Full Text] [Related] [New Search]