These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stop-flow analysis of cooperative interactions between GLUT1 sugar import and export sites.
    Author: Sultzman LA, Carruthers A.
    Journal: Biochemistry; 1999 May 18; 38(20):6640-50. PubMed ID: 10350483.
    Abstract:
    The human erythrocyte sugar transporter is thought to function either as a simple carrier (sugar import and sugar export sites are presented sequentially) or as a fixed-site carrier (sugar import and sugar export sites are presented simultaneously). The present study examines each hypothesis by analysis of the rapid kinetics of reversible cytochalasin B binding to the sugar export site in the presence and absence of sugars that bind to the sugar import site. Cytochalasin B binding to the purified, human erythrocyte glucose transport protein (GLUT1) induces quenching of GLUT1 intrinsic tryptophan fluorescence. The time-course of GLUT1 fluorescence quenching reflects a second-order process characterized by simple exponential kinetics. The pseudo-first-order rate constant describing fluorescence decay (kobs) increases linearly with [cytochalasin B] while the extent of fluorescence quenching increases in a saturable manner with [cytochalasin B]. Rate constants for cytochalasin B binding to GLUT1 (k1) and dissociation from the GLUT1.cytochalasin B complex (k-1) are obtained from the relationship: kobs = k-1 + k1[cytochalasin B]. Low concentrations of maltose, D-glucose, 3-O-methylglucose, and other GLUT1 import-site reactive sugars increase k-1(app) and reduce k1(app) for cytochalasin B interaction with GLUT1. Higher sugar concentrations decrease k1(app) further. The simple carrier mechanism predicts that k1(app) alone is modulated by import- and export-site reactive sugars and is thus incompatible with these findings. These results are consistent with a fixed-site carrier mechanism in which GLUT1 simultaneously presents cooperative sugar import and export sites.
    [Abstract] [Full Text] [Related] [New Search]