These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: C-reactive protein: structural biology and host defense function.
    Author: Szalai AJ, Agrawal A, Greenhough TJ, Volanakis JE.
    Journal: Clin Chem Lab Med; 1999 Mar; 37(3):265-70. PubMed ID: 10353470.
    Abstract:
    Human C-reactive protein is a Ca2+-binding acute phase-protein with binding specificity for phosphocholine. Recent crystallographic and mutagenesis studies have provided a solid understanding of the structural biology of the protein, while experiments using transgenic mice have confirmed its host-defense function. The protein consists of five identical protomers in cyclic symmetry. On one face of each protomer there is a binding site for phosphocholine consisting of two Ca2+ ions that ligate the phosphate group and a hydrophobic pocket that accommodates the methyl groups of phosphocholine. On the opposite face is a deep cleft formed by parts of the N and C termini and bordered by an alpha-helix. Mutational studies indicate that the C1q-binding site of the molecule is located at the open end of this cleft with Asp112 and Tyr175 representing contact residues. Using human C-reactive protein transgenic mice, we investigated the host defense functions of the protein. Transgenic mice infected with Streptococcus pneumoniae had increased lifespan and lowered mortality compared to wild-type mice. This was attributable to an up to 400-fold reduction in bacteremia mediated mainly by the interaction of C-reactive protein with complement. A complement-independent host protective effect was also demonstrated.
    [Abstract] [Full Text] [Related] [New Search]