These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modulation of oxidative phosphorylation of human kidney 293 cells by transfection with the internal rotenone-insensitive NADH-quinone oxidoreductase (NDI1) gene of Saccharomyces cerevisiae.
    Author: Seo BB, Matsuno-Yagi A, Yagi T.
    Journal: Biochim Biophys Acta; 1999 May 26; 1412(1):56-65. PubMed ID: 10354494.
    Abstract:
    In contrast to the mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I), which consists of at least 43 different subunits, the internal rotenone-insensitive NADH-quinone oxidoreductase (Ndi1) of Saccharomyces cerevisiae is a single polypeptide enzyme. The NDI1 gene was stably transfected into the human embryonal kidney 293 (HEK 293) cells. The transfected NDI1 gene was then transcribed and translated in the HEK 293 cells to produce the functional enzyme. The immunochemical and immunofluorescence analyses indicated that the expressed Ndi1 polypeptide was located to the inner mitochondrial membranes. The expression of Ndi1 did not alter the content of existing complex I in the HEK 293 mitochondria, suggesting that the expressed Ndi1 enzyme does not displace the endogenous complex I. The NADH oxidase activity of the NDI1-transfected HEK 293 cells was not affected by rotenone but was inhibited by flavone. The ADP/O ratios coupled to NADH oxidation were lowered from 2.4 to 1.8 by NDI1-transfection while the ADP/O ratios coupled to succinate oxidation (1.6) were not changed. The NDI1-transfected HEK 293 cells were able to grow in media containing a complex I inhibitor such as rotenone and 1-methyl-4-phenylpyridinium ion. The potential usefulness of incorporating the Ndi1 protein into mitochondria of human cells is discussed.
    [Abstract] [Full Text] [Related] [New Search]