These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Decreased alpha-adrenergic response in the intestinal microcirculation after "two-hit" hemorrhage/resuscitation and bacteremia. Author: Spain DA, Kawabe T, Keelan PC, Wilson MA, Harris PD, Garrison RN. Journal: J Surg Res; 1999 Jun 15; 84(2):180-5. PubMed ID: 10357917. Abstract: BACKGROUND: The two-hit theory of multiple organ dysfunction syndrome proposes that an initial insult primes the host for an altered response to subsequent stimuli. We have previously documented enhanced dilator tone in the small intestine after a two-hit insult; however, the effects on vasoconstrictor function are unknown. We postulated that prior hemorrhage and resuscitation followed by bacteremia would alter microvascular responsiveness to alpha-adrenergic stimulation. METHODS: Male Sprague-Dawley rats underwent fixed-volume hemorrhage with resuscitation (H/R) or sham procedure (Sham). At 24 or 72 h, in vivo videomicroscopy of the small intestine was performed (inflow A1 and premucosal A3 arterioles). Constrictor function was assessed by topical application of norepinephrine (NE; 10(-8)-10(-6) M) before and 1 h after intravenous Escherichia coli or saline. RESULTS: Sham, 24 or 72 h H/R, and E. coli alone produced no significant changes in A1 or A3 response to NE. Sequential H/R + E. coli resulted in decreased constrictor response in both A1 (72 h H/R + E. coli-38% from baseline vs Sham - 54%, P < 0.05) and A3 arterioles (-8% vs -51%, P < 0.05) at high doses of NE (10(-6) M). CONCLUSIONS: Prior H/R primes the intestinal microvasculature for an altered response during a subsequent stress and these effects persist for up to 72 h following H/R. Sequential insults in this two-hit model caused marked hyporesponsiveness to NE. These alterations in control of microvascular tone might contribute to the hemodynamic compromise of sepsis, impair mucosal blood flow, and contribute to the development of MODS.[Abstract] [Full Text] [Related] [New Search]