These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Depolarization increases the apparent affinity of the Na+-K+ pump to cytoplasmic Na+ in isolated guinea-pig ventricular myocytes. Author: Barmashenko G, Kockskämper J, Glitsch HG. Journal: J Physiol; 1999 Jun 15; 517 ( Pt 3)(Pt 3):691-8. PubMed ID: 10358110. Abstract: 1. In order to investigate the possible effect of membrane potential on cytoplasmic Na+ binding to the Na+-K+ pump, we studied Na+-K+ pump current-voltage relationships in single guinea-pig ventricular myocytes whole-cell voltage clamped with pipette solutions containing various concentrations of Na+ ([Na+]pip) and either tetraethylammonium (TEA+) or N-methyl-D-glucamine (NMDG+) as the main cation. The experiments were conducted at 30 C under conditions designed to abolish the known voltage dependence of other steps in the pump cycle, i.e. in Na+-free external media containing 20 mM Cs+. 2. Na+-K+ pump current (Ip) was absent in cells dialysed with Na+-free pipette solutions and was almost voltage independent at 50 mM Na+pip (potential range: -100 to +40 mV). By contrast, the activation of Ip by 0.5-5 mM Na+pip was clearly voltage sensitive and increased with depolarization, independently of the main intracellular cation species. 3. The apparent affinity of the Na+-K+ pump for cytoplasmic Na+ increased monotonically with depolarization. The [Na+]pip required for half-maximal Ip activation (K0.5 value) amounted to 5.6 mM at -100 mV and to 2.2 mM at +40 mV. 4. The results suggest that cytoplasmic Na+ binding and/or a subsequent partial reaction in the pump cycle prior to Na+ release is voltage dependent. From the voltage dependence of the K0.5 values the dielectric coefficient for intracellular Na+ binding/translocation was calculated to be approximately 0.08. The voltage-dependent mechanism might add to the activation of the cardiac Na+-K+ pump during cardiac excitation.[Abstract] [Full Text] [Related] [New Search]