These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Troglitazone inhibits voltage-dependent calcium currents in guinea pig cardiac myocytes.
    Author: Nakajima T, Iwasawa K, Oonuma H, Imuta H, Hazama H, Asano M, Morita T, Nakamura F, Suzuki J, Suzuki S, Kawakami Y, Omata M, Okuda Y.
    Journal: Circulation; 1999 Jun 08; 99(22):2942-50. PubMed ID: 10359740.
    Abstract:
    BACKGROUND: It has been suggested that intracellular Ca2+ overload in cardiac myocytes leads to the development of diabetic cardiomyopathy. Troglitazone, an insulin-sensitizing agent, is a promising therapeutic agent for diabetes and has been shown to prevent diabetes-induced myocardial changes. To elucidate the underlying mechanism of troglitazone action on cardiac myocytes, the effects of troglitazone on voltage-dependent Ca2+ currents were examined and compared with classic Ca2+ antagonists (verapamil and nifedipine). METHODS AND RESULTS: Whole-cell voltage-clamp techniques were applied in single guinea pig atrial myocytes. Under control conditions with CsCl internal solution, the voltage-dependent Ca2+ currents consisted of both T-type (ICa,T) and L-type (ICa,L) Ca2+ currents. Troglitazone effectively reduced the amplitude of ICa,L in a concentration-dependent manner. Troglitazone also suppressed ICa,T, but the effect of troglitazone on ICa,T was less potent than that on ICa,L. The current-voltage relationships for ICa,L and the reversal potential for ICa,L were not altered by troglitazone. The half-maximal inhibitory concentration of troglitazone on ICa,L measured at a holding potential of -40 mV was 6.3 micromol/L, and 30 micromol/L troglitazone almost completely inhibited ICa,L. Troglitazone 10 micromol/L did not affect the time courses for inactivation of ICa,L and inhibited ICa,L mainly in a use-independent fashion, without shifting the voltage-dependency of inactivation. This effect was different from those of verapamil and nifedipine. Troglitazone also reduced isoproterenol- or cAMP-enhanced ICa,L. CONCLUSIONS: These results demonstrate that troglitazone inhibits voltage-dependent Ca2+ currents (T-type and L-type) and then antagonizes the effects of isoproterenol in cardiac myocytes, thus possibly playing a role in preventing diabetes-induced intracellular Ca2+ overload and subsequent myocardial changes.
    [Abstract] [Full Text] [Related] [New Search]