These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Internal electron transfer and structural dynamics of cd1 nitrite reductase revealed by laser CO photodissociation.
    Author: Wilson EK, Bellelli A, Liberti S, Arese M, Grasso S, Cutruzzolà F, Brunori M, Brzezinski P.
    Journal: Biochemistry; 1999 Jun 08; 38(23):7556-64. PubMed ID: 10360953.
    Abstract:
    Laser photolysis techniques have been employed to investigate the internal electron transfer (eT) reaction within Pseudomonas aeruginosa nitrite reductase (Pa-NiR). We have measured the (d1--> c) internal eT rate for the wild-type protein and a site-directed mutant (Pa-NiR H327A) which has a substitution in the d1-heme binding pocket; we found the rate of eT to be fast, keT = 2.5 x 10(4) and 3.5 x 10(4) s-1 for the wild-type and mutant Pa-NiR, respectively. We also investigated the photodissociation of CO from the fully reduced proteins and observed microsecond first-order relaxations; these imply that upon breakage of the Fe2+-CO bond, both Pa-NiR and Pa-NiR H327A populate a nonequilibrium state which decays to the ground state with a complex time course that may be described by two exponential processes (k1 = 3 x 10(4) s-1 and k2 = 0.25 x 10(4) s-1). These relaxations do not have a kinetic difference spectrum characteristic of CO recombination, and therefore we conclude that Pa-NiR undergoes structural rearrangements upon dissociation of CO. The bimolecular rate of CO rebinding is 5 times faster in Pa-NiR H327A than in the wild-type enzyme (1.1 x 10(5) M-1 s-1 compared to 2 x 10(4) M-1 s-1), indicating that this mutation in the active site alters the CO diffusion properties of the protein, probably reducing steric hindrance. CO rebinding to the wild-type mixed valence enzyme (c3+d12+) which is very slow (k = 0.25 s-1) is proposed to be rate-limited by the c --> d1 internal eT event, involving the oxidized d1-heme which has a structure characteristic of the fully oxidized and partially oxidized Pa-NiR.
    [Abstract] [Full Text] [Related] [New Search]