These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: ATP reduces macromolecule permeability of endothelial monolayers despite increasing [Ca2+]i. Author: Noll T, Hölschermann H, Koprek K, Gündüz D, Haberbosch W, Tillmanns H, Piper HM. Journal: Am J Physiol; 1999 Jun; 276(6):H1892-901. PubMed ID: 10362668. Abstract: We investigated the relationship between the ATP-evoked rise of cytosolic Ca2+ concentration ([Ca2+]i) and barrier function in porcine aortic endothelial monolayers. ATP (0.01-100 microM) induced a transient rise of [Ca2+]i and reduced permeability in a concentration-dependent manner. In contrast, the Ca2+ ionophore ionomycin (1 microM) elicited a rise in [Ca2+]i comparable to that induced by ATP (10 microM), but it increased permeability. For the reduction of permeability, nucleotides were found to be in the following order of potency: ATP = ATPgammaS > ADP = UTP. Blockade of adenosine receptors by 8-phenyltheophylline (10 microM) did not affect ATP (10 microM)-induced reduction of permeability. ATP reduced permeability even in endothelial monolayers that had been loaded with the Ca2+ chelator BAPTA to prevent the rise in [Ca2+]i. U-73122 (1 microM), an inhibitor of phospholipase C (PLC), completely abolished the effect of ATP (10 microM) on permeability. It also abolished the translocation of protein kinase C (PKC) in response to ATP, which could also be achieved by the PKC inhibitors Gö-6976 (100 nM) or bisindolylmaleimide I (1 microM). In the presence of PKC inhibitors, however, the permeability effect of ATP was not affected. The presence of inhibitors of adenylate or guanylate cyclase (50 microM SQ-22536 or 20 microM ODQ) prevented changes in cyclic nucleotides but did not affect the permeability effects of ATP. The study shows that ATP reduces macromolecule permeability via a PLC-mediated mechanism that is independent of the concomitant effects of ATP on cytosolic Ca2+, cyclic nucleotides, or PKC.[Abstract] [Full Text] [Related] [New Search]