These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Beta-sheet breaker peptide inhibitor of Alzheimer's amyloidogenesis with increased blood-brain barrier permeability and resistance to proteolytic degradation in plasma. Author: Poduslo JF, Curran GL, Kumar A, Frangione B, Soto C. Journal: J Neurobiol; 1999 Jun 05; 39(3):371-82. PubMed ID: 10363910. Abstract: Short synthetic peptides homologous to the central region of Abeta but bearing proline residues as beta-sheet blockers have been shown in vitro to bind to Abeta with high affinity, partially inhibit Abeta fibrillogenesis, and redissolve preformed fibrils. While short peptides have been used extensively as therapeutic drugs in medicine, two important problems associated with their use in central nervous system diseases have to be addressed: (a) rapid proteolytic degradation in plasma, and (b) poor blood-brain barrier (BBB) permeability. Recently, we have demonstrated that the covalent modification of proteins with the naturally occurring polyamines significantly increases their permeability at the BBB. We have extended this technology to iAbeta11, an 11-residue beta-sheet breaker peptide that inhibits Abeta fibrillogenesis, by covalently modifying this peptide with the polyamine, putrescine (PUT), and evaluating its plasma pharmacokinetics and BBB permeability. After a single intravenous bolus injection in rats, both 125I-YiAbeta11 and 125I-PUT-YiAbeta11 showed rapid degradation in plasma as determined by trichloroacetic acid (TCA) precipitation and paper chromatography. By switching to the all D-enantiomers of YiAbeta11 and PUT-YiAbeta11, significant protection from degradation by proteases in rat plasma was obtained with only 1.9% and 5.7% degradation at 15 min after intravenous bolus injection, respectively. The permeability coefficient x surface area product at the BBB was five- sevenfold higher in the cortex and hippocampus for the 125I-PUT-D-YiAbeta11 compared to the 125I-D-YiAbeta11, with no significant difference in the residual plasma volume. In vitro assays showed that PUT-D-YiAbeta11 retains its ability to partially inhibit Abeta fibrillogenesis and dissolve preformed amyloid fibrils. Because of its five- to sevenfold increase in permeability at the BBB and its resistance to proteolysis in the plasma, this polyamine-modified beta-sheet breaker peptide may prove to be an effective inhibitor of amyloidogenesis in vivo and, hence, an important therapy for Alzheimer's disease.[Abstract] [Full Text] [Related] [New Search]