These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Direct determination of selenium and other trace elements in serum samples by ICP-MS. Author: Forrer R, Gautschi K, Stroh A, Lutz H. Journal: J Trace Elem Med Biol; 1999 Apr; 12(4):240-7. PubMed ID: 10365378. Abstract: Selenium belongs to a group of trace elements of special interest in biological samples for clinical diagnosis. Selenium has antioxidizing functions and is essential for providing the organism with triiodothyronine produced from thyroxine. Among several analytical techniques used to determine the Se concentration in serum, Inductively Coupled Plasma Mass Spectrometry (ICP-MS) has been used in the past because of its high sensitivity. Interference problems originating from different ions on the major Se isotopes have been described to be a limiting factor for the direct determination of Se in these matrices. Standard addition calibration or isotope dilution is often required to overcome carbon-enhanced ionisation effects in biological sample matrices. In most cases, the typical serum sample volume which is available for the analysis is limited to 0.5 ml or less, making multiple sample preparation for standard addition calibration impractical. Isotope dilution requires enriched isotopes and substantial sample preparation. Furthermore, the approximate Se concentration in every sample has to be known to adjust the appropriate amount of spike to each sample. Matrix matching with methanol has been described to overcome ionisation effects but we found limiting factors of this application when other trace elements are also determined within one sample run. This paper describes an effective sample preparation method which allows the direct determination of Se in serum without limiting the analytical capabilities for the additional determination of Al, Cu, Ni, Co, Cd, Mn and Zn in a single sample run by ICP-MS. Optimization procedures are presented and results of the analysis of reference samples are discussed, with a comparison of more than 150 serum data with those obtained by the GF-AAS method.[Abstract] [Full Text] [Related] [New Search]