These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of choline and other nicotinic agonists on the tectum of juvenile and adult Xenopus frogs: a patch-clamp study. Author: Titmus MJ, Tsai HJ, Lima R, Udin SB. Journal: Neuroscience; 1999; 91(2):753-69. PubMed ID: 10366031. Abstract: We have used anatomical methods and whole-cell patch-clamp recording to assess the distribution of nicotinic receptors in the tectum of Xenopus frogs and to measure effects of nicotinic ligands (carbachol, cytisine and nicotine) on glutamatergic spontaneous miniature excitatory postsynaptic currents. Our results confirm that retinotectal axons account for the majority of nicotinic receptors in the tectum and that nicotinic agonists exert presynaptic effects that increase the rate of transmitter release on to tectal cells. The nicotinic blockers mecamylamine and methyllycaconitine reduced responses to carbachol and cytisine. A small percentage of cells also showed postsynaptic responses. We have assessed whether there are developmental changes in the frequency of occurrence of spontaneous miniature excitatory postsynaptic currents. The first three months post-metamorphosis fall within the critical period for the dramatic plasticity displayed by binocular inputs during development in Xenopus. During this period, visual activity governs the formation of orderly maps relayed from the ipsilateral eye via the cholinergic projection from the nucleus isthmi to the tectum. In this study, we have found that critical-period tecta (two to 12 weeks postmetamorphosis) tend to have higher spontaneous activity than do older tecta (two to 69 weeks postmetamorphosis), and that nicotinic agonists increase that activity in both groups, with the result that the peak rates in response to nicotinic agonists are higher during the critical period than later. We also investigated the possible role of choline as an agonist of nicotinic receptors in the tectum. We have found that choline, as well as carbachol and cytisine, can cause a reversible increase in the rate of miniature excitatory postsynaptic currents. This result may help to explain how the isthmotectal projection, which accounts for the overwhelming majority of cholinergic input to the tectum, can exert effects on retinotectal terminals even though there are no morphologically identifiable synapses between the two populations. We have examined the morphology of cells filled with biocytin during the patch-clamp experiments, and we find that cells with dendrites in the stratum zonale, a layer with particularly dense input from the contralateral nucleus isthmi, have higher spontaneous activity than cells with dendrites that do not extend into that layer. Nicotinic agonists increased the activity recorded in both classes of cells. In addition, four pretectal cells were identified. Nicotinic agonists increased the rate of spontaneous activity recorded in that population. The results indicate that retinotectal transmission in the superior colliculus can be increased presynaptically by activity of the cholinergic projections of the nucleus isthmi. This modulation may be the basis for observations that blocking of cholinergic input disrupts the formation of topographic retinotectal projections. Moreover, the ability of choline to activate these receptors suggests that this metabolite of acetylcholine may permit paracrine activation of presynaptic receptors even though the tectum contains high acetylcholinesterase activity.[Abstract] [Full Text] [Related] [New Search]