These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Group I mGluR activation causes voltage-dependent and -independent Ca2+ rises in hippocampal pyramidal cells. Author: Bianchi R, Young SR, Wong RK. Journal: J Neurophysiol; 1999 Jun; 81(6):2903-13. PubMed ID: 10368407. Abstract: Application of the metabotropic glutamate receptor (mGluR) agonist (1S, 3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) or the selective group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG) depolarized both CA3 and CA1 pyramidal cells in guinea pig hippocampal slices. Simultaneous recordings of voltage and intracellular Ca2+ levels revealed that the depolarization was accompanied by a biphasic elevation of intracellular Ca2+ concentration ([Ca2+]i): a transient calcium rise followed by a delayed, sustained elevation. The transient [Ca2+]i rise was independent of the membrane potential and was blocked when caffeine was added to the perfusing solution. The sustained [Ca2+]i rise appeared when membrane depolarization reached threshold for voltage-gated Ca2+ influx and was suppressed by membrane hyperpolarization. The depolarization was associated with an increased input resistance and persisted when either the transient or sustained [Ca2+]i responses was blocked. mGluR-mediated voltage and [Ca2+]i responses were blocked by (+)-alpha-methyl-4-carboxyphenylglycine (MCPG) or (S)-4-carboxy-3-hydroxyphenylglycine (4C3HPG). These data suggest that in both CA3 and CA1 hippocampal cells, activation of group I mGluRs produced a biphasic accumulation of [Ca2+]i via two paths: a transient release from intracellular stores, and subsequently, by influx through voltage-gated Ca2+ channels. The concurrent mGluR-induced membrane depolarization was not caused by the [Ca2+]i rise.[Abstract] [Full Text] [Related] [New Search]