These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Blockade of nitric oxide synthase potentiates the suppression of vasodilators by norepinephrine in the hepatic artery. Author: Han C, Lautt WW. Journal: Nitric Oxide; 1999; 3(2):172-9. PubMed ID: 10369187. Abstract: We have previously shown that nitric oxide (NO) and adenosine suppress vasoconstriction induced by norepinephrine infusion and sympathetic nerve stimulation in the hepatic artery and superior mesenteric artery. NO is involved in the control of basal vascular tone in the superior mesenteric artery but not the hepatic artery. The vasodilation induced by adenosine is inhibited by NO in the superior mesenteric artery but not in the hepatic artery. Based on these known interactions of catecholamines, adenosine, and NO, the objective of this study was to test the hypothesis that NO modulates the interaction between vasoconstrictors and vasodilators in the hepatic artery. We examined the ability of norepinephrine to suppress adenosine-mediated vasodilation and the role of NO in this interaction. Hepatic arterial blood flow and pressure were monitored in pentobarbital-anesthetized cats. The maximum hepatic arterial vasoconstrictor response to norepinephrine infusion was potentiated by blockade of NO production using Nomega-nitro-L-arginine methyl ester (L-NAME), and the potentiation was reversed by L-arginine. The maximum dilator response to adenosine was only slightly suppressed (14.0+/-5.8%, P < 0.05) by norepinephrine infusion; however, after the NO blockade, the suppression by norepinephrine of the vasodilation induced by adenosine was substantially potentiated (45.2+/-9.1%, P < 0.05). Similar results were obtained for isoproterenol-induced vasodilation. We conclude that the interaction between these vasodilators and norepinephrine was modulated by NO which inhibited the vasoconstriction and the suppression of vasodilators caused by norepinephrine and that in the absence of NO production, norepinephrine-induced constriction and the ability to antagonize dilation is substantially potentiated.[Abstract] [Full Text] [Related] [New Search]