These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Oncogenic Ras-induced germinal vesicle breakdown is independent of phosphatidylinositol 3-kinase in Xenopus oocytes.
    Author: López-Hernández E, Santos E.
    Journal: FEBS Lett; 1999 May 28; 451(3):284-8. PubMed ID: 10371206.
    Abstract:
    A number of reports have identified phosphatidylinositol 3-kinase as a downstream effector of Ras in various cellular settings, in contrast to others supporting the notion that phosphatidylinositol 3-kinase acts upstream of Ras. Here, we used Xenopus oocytes, a model of Ras-mediated cell cycle progression (G2/M transition) to analyze the contribution of phosphatidylinositol 3-kinase to insulin/Ras-dependent signaling pathways leading to germinal vesicle breakdown and to ascertain whether phosphatidylinositol 3-kinase acts upstream or downstream of Ras in those signaling pathways. We analyzed the process of meiotic maturation induced by progesterone, insulin or micro-injected oncogenic Ras (Lys12) proteins in the presence and absence of specific inhibitors of phosphatidylinositol 3-kinase activity. As expected, the progesterone-induced maturation was independent of phosphatidylinositol 3-kinase since similar rates of germinal vesicle breakdown were produced by the hormone in the presence and absence of wortmannin and LY294002. In contrast, insulin-induced germinal vesicle breakdown was completely blocked by pre-incubation with the inhibitors prior to insulin treatment. Interestingly, similar rates of germinal vesicle breakdown were obtained in Ras (Lys12)-injected oocytes, independently of whether or not they had been pre-treated with phosphatidylinositol 3-kinase inhibitors. The effect of wortmannin or LY294002 on MAPK and Akt activation by progesterone, insulin or Ras was also analyzed. Whereas insulin activated those kinases in a phosphatidylinositol 3-kinase-dependent manner, progesterone and Ras were able to activate those kinases in the absence of phosphatidylinositol 3-kinase activity. Since Ras is a necessary and sufficient downstream component of insulin signaling pathways leading to germinal vesicle breakdown, these observations demonstrate that phosphatidylinositol 3-kinase is not a downstream effector of Ras in insulin/Ras-dependent signaling pathways leading to entry into the M phase in Xenopus oocytes.
    [Abstract] [Full Text] [Related] [New Search]