These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Baclofen alters ethanol-stimulated activity but not conditioned place preference or taste aversion in mice.
    Author: Chester JA, Cunningham CL.
    Journal: Pharmacol Biochem Behav; 1999 Jun; 63(2):325-31. PubMed ID: 10371663.
    Abstract:
    The present experiments examined the effects of the GABA(B) receptor agonist, baclofen, on the acquisition of ethanol-induced conditioned place preference (CPP) and conditioned taste aversion (CTA) in male DBA/2J mice. Mice in the CPP experiment received four pairings of ethanol (2g/kg) with a distinctive floor stimulus for a 5-min conditioning session (CS+ sessions). On intervening days (CS- sessions), mice received saline injections paired with a different floor type. On CS+ days, mice also received one of four doses of baclofen (0.0. 2.5, 5.0, or 7.5 mg/kg) 15 min before an injection of ethanol. For the preference test, all mice received saline injections, and were placed on a half-grid and half-hole floor for a 60-min session. Baclofen dose dependently reduced ethanol-stimulated activity, but did not alter the magnitude of ethanol-induced CPP at any dose. For the CTA experiment, mice were adapted to a 2-h per day water restriction regimen followed by five conditioning trials every 48 h. During conditioning trials, subjects received an injection of saline or baclofen (2.0 and 6.0 mg/kg) 15 min before injection of 2 g/kg ethanol or saline following 1-h access to a saccharin solution. Baclofen did not alter the magnitude of ethanol-induced CTA at any dose. In addition, baclofen alone did not produce a CTA. Overall, these studies show that activation of GABA(B) receptors with baclofen reduces ethanol-induced locomotor activation, but does not alter ethanol's rewarding or aversive effects in the CPP and CTA paradigms in DBA/2J mice.
    [Abstract] [Full Text] [Related] [New Search]