These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hypoxia and cAMP stimulate vascular endothelial growth factor (VEGF) in human endometrial stromal cells: potential relevance to menstruation and endometrial regeneration.
    Author: Popovici RM, Irwin JC, Giaccia AJ, Giudice LC.
    Journal: J Clin Endocrinol Metab; 1999 Jun; 84(6):2245-8. PubMed ID: 10372740.
    Abstract:
    The human female reproductive tract shows unique cycle-specific changes in vascularization. Vascular endothelial growth factor (VEGF) is a specific vascular endothelial mitogen which is produced by human endometrium and is known to be regulated by steroid hormones. Vasoconstriction during menstruation leads to endometrial hypoxia, a possible stimulus for angiogenesis. In the current study we tested the hypothesis that hypoxia and cAMP, a known stimulus for endometrial decidualization, can induce VEGF in human endometrial stromal cells. Decidualized as well as non decidualized stromal cells from 6 patients were exposed to normoxia (20% oxygen) and hypoxia (2% oxygen) for up to 72h. VEGF levels were assessed by Northern analysis using a 605 bp BamHI fragment of the human VEGF cDNA, and hybridization signals were normalized to levels of 18S RNA. VEGF protein was determined by ELISA. Hypoxia stimulated VEGF mRNA in decidualized stromal cells by 10.2 fold at 48h compared to normoxic controls. VEGF protein increased 10 fold by 48h and increased further to 13 fold at 72h. In the presence of 2% oxygen VEGF mRNA in nondecidualized endometrial stromal cells was increased 1.2-8 fold between 2 and 72h of treatment. VEGF protein also increased 1.2-9 fold in this time period. cAMP regulated both VEGF mRNA and protein in non decidualized stromal cells. VEGF mRNA increased 2-4 fold in 2-72h and protein production showed a 2-6 fold increase. VEGF was seen to be regulated by both cAMP and hypoxia in an additive manner. These results demonstrate that both non-decidualized and decidualized endometrial stromal cells respond to hypoxia with increasing levels of VEGF. 8Br-cAMP, which is shown to increase VEGF levels in endometrial cells per se, has an additive effect on VEGF production under hypoxic conditions. This effect may have physiologic and pathophysiologic relevance during the process of menstruation and in post menstrual endometrial repair and angiogenesis.
    [Abstract] [Full Text] [Related] [New Search]