These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Variable renal atrial natriuretic factor gene expression in hypertension.
    Author: Ogawa T, Linz W, Schölkens BA, de Bold AJ.
    Journal: Hypertension; 1999 Jun; 33(6):1342-7. PubMed ID: 10373213.
    Abstract:
    We have previously established the existence of atrial natriuretic factor (ANF) gene expression within the renal parenchyma. Neither the role nor the regulation of this extracardiac source of ANF is clearly defined. To determine whether renal ANF gene expression, similar to cardiac expression, is linked to the activity of the renin-angiotensin system (RAS), we compared renal ANF gene expression in rats after suprarenal aortic banding, a hypertension model associated with activation of RAS, and in the deoxycorticosterone acetate (DOCA)-salt model, which is characterized by depression of RAS. Renal ANF mRNA was measured with a quantitative competitive reverse transcription polymerase chain reaction method. DOCA-salt hypertension significantly reduced the expression of renal ANF. In contrast, aortic banding significantly increased renal ANF expression. In both cases, ANF gene expression in the heart increased. Ramipril treatment at 10 micrograms/kg of aortic-banded rats, a treatment that specifically affects local RAS but maintains hypertension, normalized renal ANF mRNA levels. Altogether, these results suggest that renal ANF gene expression is modulated by local RAS and is independent of circulating RAS and hypertension per se. The marked decrease of renal ANF mRNA in DOCA-salt hypertension suggests a pathogenic role for renal ANF gene downregulation by decreasing the sodium excretory mechanism mediated by the local expression of ANF acting on receptors found in the inner medullary collecting ducts. In aortic banding, renal ANF gene expression upregulation suggests a local compensatory function consistent with the consensus role of natriuretic peptides in the modulation of RAS, thus ameliorating the sodium-retaining effects of renal underperfusion.
    [Abstract] [Full Text] [Related] [New Search]