These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differences in NK cell function in mice bred for high and low aggression: genetic linkage between complex behavioral and immunological traits?
    Author: Petitto JM, Gariepy JL, Gendreau PL, Rodriguiz R, Lewis MH, Lysle DT.
    Journal: Brain Behav Immun; 1999 Jun; 13(2):175-86. PubMed ID: 10373280.
    Abstract:
    In previous studies, we found differences in cellular immune responsiveness in Institute for Cancer Research (ICR) mice selectively bred for high and low levels of aggression. Compared to the high aggressive line, the low aggressive line had low levels of natural killer (NK) and T cell activity and increased susceptibility to tumor development. To dissect further this novel association, experiments were designed to test two competing hypotheses. The first hypothesis was that the phenotypic expression of the line differences in NK cell activity are dependent on and regulated by the expression of high and low levels aggressive behavior in the lines. The alternative hypothesis was that the differences in immune status are independent of the expression of aggression by the lines, suggesting linkage between a subset of genes involved in determining these complex behavioral and immunological traits or pleiotropic gene effects on both traits. In Experiment 1, three conditions of postweaning social experience (mice singly housed, group housed within line, or group housed between lines) were tested in males to determine whether experiential conditions which modify the expression of aggression would in turn modify the line differences in NK cell activity. This experiment revealed that the difference in NK cell activity between high aggressive and low aggressive male mice was attributable to line only. The different postweaning social conditions examined had no effect on modifying the differences in NK activity, and social dominance hierarchy did not correlate with levels of NK cell activity. Whereas males of the high and low lines exhibit differences in aggressive behaviors across most contexts, females do not exhibit such differences except in response to an intruder during the postpartum period. Therefore, in Experiment 2 we compared the NK cell activity of nulliparous females of the high and low aggressive lines. Under these conditions, females of the low aggressive line had low levels of NK activity compared to high aggressive females (differences comparable to those seen between males of the high and low lines). Taken together, these experiments lend support to the hypothesis that this association may be due to a genetic linkage between subsets of genes involved in determining these complex behavioral and immunological traits, or may possibly represent a fortuitous association which occurred during the selective breeding.
    [Abstract] [Full Text] [Related] [New Search]