These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Neurotrophin-3 potentiates excitatory GABAergic synaptic transmission in cultured developing hypothalamic neurones of the rat. Author: Gao XB, van den Pol AN. Journal: J Physiol; 1999 Jul 01; 518(Pt 1):81-95. PubMed ID: 10373691. Abstract: 1. Neurotrophin-3 (NT-3) supports the survival and differentiation of neurones in the central and peripheral nervous systems through a number of mechanisms that occur in a matter of hours or days. NT-3 may also have a more rapid mode of action that influences synaptic activity in mature neurones. In the present study, the effect of NT-3 on developing GABAergic synapses was investigated in 3- to 7-day-old cultures of rat hypothalamic neurones with whole-cell patch-clamp recording. 2. NT-3 induced a substantial dose-dependent potentiation of the frequency of spontaneous postsynaptic currents (sPSCs; 160 %) in developing neurones during a period when GABA evoked inward (depolarizing) current, as determined with gramicidin-perforated patch recordings. The NT-3 effect was long lasting; continued enhancement was found > 30 min after NT-3 wash-out. NT-3 evoked a substantial 202 % increase in total GABA-mediated inward current, measured as the time-current integral. Action potential frequency was also increased by NT-3 (to 220 %). 3. The frequency of GABA-mediated miniature postsynaptic currents in developing neurones in the presence of tetrodotoxin was potentiated (to 140%) by NT-3 with no change in the mean amplitude, suggesting a presynaptic locus of the effect. 4. In striking contrast to immature neurones, when more mature neurones were studied, NT-3 did not enhance the frequency of GABA-mediated spontaneous postsynaptic currents (sPSCs), but instead evoked a slight (16%) decrease. The frequency of miniature post-synaptic currents was also slightly decreased (16%) by the NT-3, with no change in amplitude. These results were recorded during a later period of neuronal maturity when GABA would evoke outward (hyperpolarizing) currents. NT-3 had no effect on the mean amplitude of GABA-evoked postsynaptic currents in either developing or mature neurones. 5. Intracellular application of K252a, a non-selective tyrosine kinase inhibitor, did not block the NT-3 effect postsynaptically. In contrast, bath application of K252a prevented the enhancement of sPSCs by NT-3, consistent with NT-3 acting through presynaptic induction of tyrosine kinase. Decreasing extracellular calcium with BAPTA or inhibiting calcium channels with Cd2+ blocked the augmentation of sPSC frequency by NT-3, suggesting that an increase of calcium entry may be required for the facilitation of NT-3. 6. Together, our results suggest NT-3 enhances GABA release during the developmental period when GABA is depolarizing and calcium elevating, but not later when GABA is inhibitory, suggesting that one mechanism through which NT-3 may influence neuronal development is via presynaptic potentiation of GABA excitation.[Abstract] [Full Text] [Related] [New Search]