These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Induction of the multispecific organic anion transporter (cMoat/mrp2) gene and biliary glutathione secretion by the herbicide 2,4,5-trichlorophenoxyacetic acid in the mouse liver.
    Author: Wielandt AM, Vollrath V, Manzano M, Miranda S, Accatino L, Chianale J.
    Journal: Biochem J; 1999 Jul 01; 341 ( Pt 1)(Pt 1):105-11. PubMed ID: 10377250.
    Abstract:
    The canalicular multispecific organic anion transporter, cMoat, is an ATP-binding-cassette protein expressed in the canalicular domain of hepatocytes. In addition to the transport of endo- and xenobiotics, cMoat has also been proposed to transport GSH into bile, the major driving force of bile-acid-independent bile flow. We have shown previously that the herbicide 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), a peroxisome-proliferator agent, significantly increases bile-acid-independent bile flow in mice. On this basis, the effect of the herbicide on cMoat gene expression was studied. A 3.6-fold increase in cMoat mRNA levels and a 2.5-fold increase in cMoat protein content were observed in the liver of mice fed on a diet supplemented with 0.125% 2,4,5-T. These effects were due to an increased rate of gene transcription (3.9-fold) and were not associated with peroxisome proliferation. Significant increases in bile flow (2.23+/-0.39 versus 1.13+/-0.15 microl/min per g of liver; P<0.05) and biliary GSH output (7.40+/-3.30 versus 2.65+/-0.34 nmol/min per g of liver; P<0.05) were observed in treated animals. The hepatocellular concentration of total glutathione also increased in hepatocytes of treated mice (10.95+/-0.84 versus 5.12+/-0.47 mM; P<0.05), because of the induction (2.4-fold) of the heavy subunit of the gamma-glutamylcysteine synthetase (GCS-HS) gene. This is the first model of co-induction of cMoat and GCS-HS genes in vivo in the mouse liver, associated with increased glutathione synthesis and biliary glutathione output. Our observations are consistent with the hypothesis that the cMoat transporter plays a crucial role in the secretion of biliary GSH.
    [Abstract] [Full Text] [Related] [New Search]