These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phospholipase C-beta and ovarian sex steroids in pig granulosa cells. Author: Lieberherr M, Grosse B, Machelon V. Journal: J Cell Biochem; 1999 Jul 01; 74(1):50-60. PubMed ID: 10381261. Abstract: We compared the membrane effects of estradiol, progesterone, and androstenedione in a single experimental model, the ovarian granulosa cells collected from immature Large White sows. We measured changes in cytosolic free calcium concentration ([Ca2+]i) in confluent Fura-2 loaded cells. We used pharmacological tools and polyclonal phospholipase C-beta (PLC-beta) antibodies. Each steroid (0.1 pM to 1 nM) transiently increased intracellular calcium concentration ([Ca2+]i) within 5 sec. They mobilized Ca2+ from the endoplasmic reticulum as shown by using two phospholipase C inhibitors, neomycin and U-73122. Ca2+ mobilization involved PLC-beta1 for progesterone, PLC-beta2 for estradiol and PLC-beta4 for androstenedione. A pertussis toxin-insensitive G protein was involved in the effects of progesterone on Ca2+ mobilization whereas estradiol and androstenedione effects were mediated via a pertussis toxin-sensitive G-protein. Ca2+ influx from the extracellular milieu was involved in the increase in [Ca2+]i induced by progesterone and estradiol, but not by androstenedione. Influx of Ca2+ was independent of Ca2+ mobilization from calcium stores, and it was suggested that L-type Ca2+ channels for estradiol and T-type Ca2+ channels for progesterone were involved. The three steroids had no effect on cAMP. Rapid effects of progesterone, estradiol, and androstenedione involved a direct action on cell membrane elements such as PLC-beta, G-proteins, and calcium channels, and these mechanisms were hormone-specific.[Abstract] [Full Text] [Related] [New Search]