These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of urinary metabolites of isoprene in rats and comparison with mouse urinary metabolites.
    Author: Buckley LA, Coleman DP, Burgess JP, Thomas BF, Burka LT, Jeffcoat AR.
    Journal: Drug Metab Dispos; 1999 Jul; 27(7):848-54. PubMed ID: 10383931.
    Abstract:
    Isoprene, a major commodity chemical used in production of polyisoprene elastomers, has been shown to be carcinogenic in rodents. Similar to findings for the structurally related compound butadiene, mice are more susceptible than rats to isoprene-induced toxicity and carcinogenicity. Although differences in uptake, and disposition of isoprene in rats and mice have been described, its in vivo biotransformation products have not been characterized in either species. The purpose of these studies was to identify the urinary metabolites of isoprene in Fischer 344 rats and compare these metabolites with those formed in male B6C3F1 mice. After i.p. administration of 64 mg [14C]isoprene/kg to rats and mice, isoprene was excreted unchanged in breath ( approximately 50%) or as urinary metabolites ( approximately 32%). In rats isoprene was primarily excreted in urine as 2-hydroxy-2-methyl-3-butenoic acid (53%), 2-methyl-3-buten-1,2-diol (23%), and the C-1 glucuronide conjugate of 2-methyl-3-buten-1,2-diol (13%). These metabolites are consistent with preferential oxidation of isoprene's methyl-substituted vinyl group. No oxidation of the unsubstituted vinyl group was observed. In addition to the isoprene metabolites found in rat urine, mouse urine contained numerous other isoprene metabolites with a larger percentage (25%) of total urinary radioactivity associated with an unidentified, polar fraction than in the rat (7%). Unlike butadiene, there was no evidence that glutathione conjugation played a significant role in the metabolism of isoprene in rats. Because of the unidentified metabolites in mouse urine, involvement of glutathione in the metabolism of isoprene in mice cannot be delineated.
    [Abstract] [Full Text] [Related] [New Search]