These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan via carbohydrate-lectin interactions resulting in reduced phagocytosis of the bacteria by macrophages.
    Author: Ferguson JS, Voelker DR, McCormack FX, Schlesinger LS.
    Journal: J Immunol; 1999 Jul 01; 163(1):312-21. PubMed ID: 10384130.
    Abstract:
    Surfactant protein-D (SP-D) is a collectin produced in the distal lung airspaces that is believed to play an important role in innate pulmonary immunity. Naive immunologic responses to Mycobacterium tuberculosis (M.tb) are especially important in the lung, since entry of this inhaled pathogen into the alveolar macrophage is a pivotal event in disease pathogenesis. Here we investigated SP-D binding to M.tb and the effect of this binding on the adherence of M. tb to human macrophages. These studies demonstrate specific binding of SP-D to M.tb that is saturable, calcium dependent, and carbohydrate inhibitable. In addition to purified SP-D, SP-D in bronchoalveolar lavage fluids from healthy donors and patients with alveolar proteinosis also binds to M.tb. Incubation of M.tb with SP-D results in agglutination of the bacteria. In contrast to its binding to M.tb, SP-D binds minimally to the avirulent Mycobacterium smegmatis. SP-D binds predominantly to lipoarabinomannan from the virulent Erdman strain of M.tb, but not the lipoarabinomannan from M. smegmatis. The binding of SP-D to Erdman lipoarabinomannan is mediated by the terminal mannosyl oligosaccharides of this lipoglycan. Incubation of M.tb with subagglutinating concentrations of SP-D leads to reduced adherence of the bacteria to macrophages (62.7% of control adherence +/- 3.3% SEM, n = 8), whereas incubation of bacteria with surfactant protein A leads to significantly increased adherence to monocyte-derived macrophages. These data provide evidence for specific binding of SP-D to M. tuberculosis and indicate that SP-D and surfactant protein A serve different roles in the innate host response to this pathogen in the lung.
    [Abstract] [Full Text] [Related] [New Search]