These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Oxygen sensing and signaling: impact on the regulation of physiologically important genes.
    Author: Zhu H, Bunn HF.
    Journal: Respir Physiol; 1999 Apr 01; 115(2):239-47. PubMed ID: 10385037.
    Abstract:
    A growing number of physiologically relevant genes are regulated in response to changes in intracellular oxygen tension. It is likely that cells from a wide variety of tissues share a common mechanism of oxygen sensing and signal transduction leading to the activation of the transcription factor hypoxia-inducible factor 1 (HIF-1). Besides hypoxia, transition metals (Co2+, Ni2+ and Mn2+) and iron chelation also promote activation of HIF-1. Induction of HIF-1 by hypoxia is blocked by the heme ligands carbon monoxide and nitric oxide. There is growing, albeit indirect, evidence that the oxygen sensor is a flavoheme protein and that the signal transduction pathway involves changes in the level of intracellular reactive oxygen intermediates. The activation of HIF-1 by hypoxia depends upon signaling-dependent rescue of its alpha-subunit from oxygen-dependent degradation in the proteasome, allowing it to form a heterodimer with HIF-1beta (ARNT), which then translocates to the nucleus and impacts on the transcription of genes whose cis-acting elements contain cognate hypoxia response elements.
    [Abstract] [Full Text] [Related] [New Search]